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1. SUMMARY 
 

This investigation of High Performance Computing (HPC) Multicast for High-Speed 
Publication-Subscription (Pub-Sub) sought to deliver both insight into and implementation of 
high-performance multicast solutions that enable better utilization of cloud resources.  Our 
solutions combine improved scalability with increased consistency — ensuring that expected and 
necessary system conditions are thus met for a myriad of critical national-asset applications that 
are likely to move to the cloud in the next decade.  In the context of this effort, the applicability 
of the oft-invoked Consistency, Availability and Partition tolerance (CAP) theorem was explored 
within specific environments of commonly deployed clouds, and novel insights into CAP’s 
tradeoffs were developed between CAP and its conclusion that a replicated service can possess 
just two of the three.  We discovered that there are replicated services for which the applicability 
of CAP is unclear, including the scalable “soft-state” services that run in the first-tier of a single 
cloud-computing data center.  The puzzle is that such services live in a single data center and run 
on redundant networks.  Partitioning events involve single machines or small groups and are 
treated as node failures; thus, the CAP proof doesn’t apply in a formal sense, as it’s proven by 
forcing a replicated service to respond to conflicting requests during a partitioning failure, 
triggering inconsistency.  Nonetheless, most developers believe in a generalized CAP “folk 
theorem,” holding that scalability and elasticity are incompatible with strong forms of 
consistency. We designed, implemented, and benchmarked the Isis2 platform:  a first-tier 
consistency alternative that replicates data, combines agreement on update ordering with amnesia 
freedom, and supports both good scalability and fast response.  We have led a team of students in 
the application of Isis2 to build a large-scale distributed computer-vision landmark-recognition 
system, thus demonstrating the practicality of Isis2 from a software-engineering perspective. Isis2 
is publically available, without patent or other intellectual-property encumbrances, via a 3-clause 
Berkeley Software Distribution (BSD) license. 
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2. INTRODUCTION 

 
Figure 1.  Part of Cornell University’s Computing Resources 

The United States needs a new generation of cheaper high-performance computing systems 
even as technology trends are shifting towards inexpensive raw computing power: some of the 
world’s fastest processors are now commodities used in gaming, multicore is becoming common, 
and advances in core Internet routing have helped optical switching leap into the 100Gbps range, 
with 1Tbps within sight.  Thus the opportunity now exists to create HPC platforms that will cost 
a fraction of what previous generations of machines cost, and yet may actually outperform most 
existing solutions.  In Fig. 1 is presented a portion of Cornell University’s research facility, 
which focuses, in part, on research for high speed networks. In particular, the networks shown in 
Figure 2 have been well characterized. 

 

Figure 2.  High Speed Networks 
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2.1     Serious Obstacles in Existing Solutions 

While existing trends reveal a possible path forward, they also confront us with serious 
obstacles. HPC programming solutions can only scale to a limited degree on cluster-style 
computing elements.  A core issue here is that technologies such as Parallel Virtual Machines 
(PVM) and Message-Passing Interface (MPI) aren’t fault-tolerant, and this limitation was “baked 
in” so long ago that it simply can’t easily be changed.  Fault-tolerance is achieved by engaging in 
constant checkpoints (at significant cost), and because cluster-style computing systems typically 
experience crashes roughly in proportion to the number of nodes, the frequency of checkpoints 
needs to increase at that same rate.  The amount of information being backed up will also rise as 
a function of the number of nodes.  Thus we have (more or less) a quadratic scalability wall: 
beyond a certain size, HPC applications will need to be fragmented into multiple but loosely 
coupled applications, each small enough to make significant progress between checkpoints, and 
each working on a distinct aspect of the overall application. 

 Our vision of HPC applications as a collection of highly parallel components that exchange 
results in a loosely coupled manner encounters a different issue: HPC platform lack adequately 
fast tools for replicating data and exchanging “events” under demanding conditions.  For 
example, the standard Enterprise Service Bus (ESB) model has frustratingly poor scalability 
properties. 

 Our research at Cornell reveals that a core problem with ESB performance is that for many 
reasons these systems are unable to take advantage of hardware IP multicast.  Two important 
ones are these:  First, modern HPC switching and routing components collapse if too many 
Internet Protocol (IP) multicast groups are in use; they start to deliver all messages to all network 
interface adapters, and those then become overloaded and drop packets.  Further, multicast 
platforms can become unstable when using hardware multicast mechanisms, behaving in a bursty 
(oscillatory) manner.  Jointly, these issues can cripple the ESB publish-subscribe technology. 

2.2 Prior Work 

In prior work, with Air Force research support (augmented by Intel and National Science 
Foundation (NSF) funding), our Cornell-based effort looked closely at some of these issues and 
found that the problems are explicable and, with appropriate software, can be brought under 
control.  For example, in our paper at the 2010 ACM EuroSys conference [1], we showed that by 
appropriately “managing” the set of IP multicast addresses, one can avoid overloading the cluster 
router, eliminating the issue described above.  Other work on our Quicksilver Scalable Multicast 
(award paper) [2] demonstrated that a collection of careful protocol design techniques can 
eliminate the bursty multicast instability. 

As discussed above, this effort builds atop our earlier successes in a series of previous 
projects here at Cornell.  Our work on methodical measurement of Wide-Area Networks 
(WANs) [3] prepared us to now examine data-center based Local-Area Networks (LANs) and 
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work to improve the HPC multicast implementations therein.  Specifically, in prior work [4] we 
introduced a new methodology called BiFocals, with application to many aspects of protocol 
design and evaluation. This instrumentation has two components: one to send engineered 
bitstreams in which we precisely control the bits on the Physical Layer, and a second that can 
achieve similar precision in extracting timing and other statistics on the receive side. We 
employed BiFocals to perform the most accurate measurements of a WAN ever undertaken. Our 
findings refuted several common assumptions about network behavior. 

The motivation for our BiFocals measurements stemmed from yet earlier work [5] that 
examined WAN’s using typical software techniques and commodity endpoints.  In that study, we 
undertook a careful examination of the end-to-end characteristics of an uncongested lambda 
network running at high speeds over long distances, identifying scenarios associated with loss, 
latency variations, and degraded throughput at attached end-hosts. We used identical fast 
commodity source and destination platforms, hence expect the destination to receive more or less 
what we send. We observed otherwise: degraded performance is common and easily provoked. 
In particular, the receiver loses packets even when the sender employs relatively low data rates. 
Data rates of future optical network components are projected to outpace clock speeds of 
commodity end-host processors, hence more and more end-to-end applications will confront the 
same issue we encounter. Our work thus posed a new challenge for those hoping to achieve 
dependable performance in higher-end networked settings. 

Further, our past success with Dr. Multicast [1] provided the underlying IPMC solutions atop 
which we build the new Isis2 platform, which we then demonstrated for HPC MC in the AFRL’s 
Condor cluster.  In our Dr. Multicast paper, we noted that IP Multicast (IPMC) in data centers 
becomes disruptive when the technology is used by a large number of groups, a capability 
desired by event notification systems. We traced the problem to root causes, and introduce Dr. 
Multicast (MCMD), a system that eliminates the issue by mapping IPMC operations to a 
combination of point-to-point unicast and traditional IPMC transmissions guaranteed to be safe. 
MCMD optimizes the use of IPMC addresses within a data center by merging similar multicast 
groups in a principled fashion, while simultaneously respecting hardware limits expressed 
through administrator-controlled policies. The system is fully transparent, making it backward-
compatible with commodity hardware and software found in modern data centers. Experimental 
evaluation showed that MCMD allows a large number of IPMC groups to be used without 
disruption, restoring a powerful group communication primitive to its traditional role. 

Finally, we’ve shown in prior work [2], recognized with a conference best paper award, that 
a careful and principled design of a multicast protocol can distinctly improve performance, as we 
hope to again try to do so with HPC multicast.  QuickSilver Multicast (QSM) is a multicast 
engine designed to support a style of distributed programming in which application objects are 
replicated among clients and updated via multicast. The model requires platforms that scale in 
dimensions previously unexplored; in particular, to large numbers of multicast groups. Prior 
systems weren’t optimized for such scenarios and can’t take advantage of regular group overlap 
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patterns, a key feature of our application domain. Furthermore, little is known about performance 
and scalability of such systems in modern managed environments. We shed light on these issues 
and offer architectural insights based on our experience building QSM. 

2.3 Application to Military Needs 
One might reasonably inquire into the connection between the results we provide in this 

effort and the larger needs of the military and its warfighters.  The scalability and consistency 
deliverables of our Isis2 platform, along with an accompanying understanding of the scenarios to 
which it is applicable, serve as key contributions of this effort.  As we discuss below, we tailor 
Isis2 to the soft-state first-tier of the cloud, thus providing application architects with the ability 
to deliver scalable, consistent interactions with remote clients.  Now, many existing applications 
that utilize the cloud infrastructure to focus on consumer, or even business, needs do not require 
higher levels of consistency, or, if they do, they can willingly trade performance to meet such 
requirements. 

However, as Department of Defense (DoD) information-system infrastructure transitions to 
the cloud, it will continue to interface with forward-deployed Command and Control (C2) 
clients.  Operating in a fluid real-time environment, these clients will be unwilling to sacrifice 
performance, and yet will clearly require levels of consistency beyond that often provided in the 
first tier of a cloud computing environment.  The type of eventual consistency that has become 
the coin of the realm for the Amazons and the eBays of the world is much less compelling when 
the problem space involves tactical situation awareness, or deconfliction of units or airspace, or a 
variety of other critical military operational uses, such as those motivated by Figure 3. 

It is therefore within this context, and ones similar to it, that the strength of our agenda here is 
best recognized.  We have succeeded in delivering scalable consistent solutions that tackle 
portions of the design space that have largely been overlooked by the wider research community. 

Further, this agenda builds naturally from our previous AFRL-sponsored effort which created the 
Live Objects middleware and delivered composable mashups to combine edge content with 
hosted content.  That earlier effort considered the technical provisioning of such hosted content 
to be outside its scope.  Now, in this AFRL-funded work, we tackle just such a problem and find 
a host of intriguing perspectives. 
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C2 clients (left) interfacing with central DoD Command Center (right) motivated our effort.  Edge clients in such an 
environment require higher levels of performance, as well as stronger guarantees of consistency, than those typically provided 
now by cloud infrastructures. 

Figure 3.  DoD Command and Control 
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3. METHODS, ASSUMPTIONS AND PROCEDURES 

The current effort focused on an attack on ESB scalability.  In particular, there were four 
core research objectives, all of which were accomplished over the course of the one-year 
research program. 

 We are convinced that the key to successfully exploiting hardware multicast in HPC systems 
is to start by fully characterizing the behavior of hardware multicast in the target setting. While 
this may seem like a trivial observation, measurement is notoriously hard on modern computer 
systems: the optical fiber is first handled by hardware in the network interface card, then copied 
to memory associated with one of the multicore CPUs in the power PC itself, and then the driver, 
Operating System (O/S) and ESB (pub-sub application) all need to take actions before a 
multicast actually reaches the end-user’s code.  Loss can and does occur at every step and 
measurement is particularly difficult when the measurement code runs on the same platform that 
experiences the loss.  We’ve completed development of a new instrumentation technology to this 
end, and in using it, we have achieved a dramatic improvement in the quality of our analysis of 
where loss occurs on this complex path, and precisely what conditions can trigger it.  We 
combined this with an examination of the larger system-wide contributions to these conditions, 
and have leveraged this to a greater understanding of the design lessons that will continue to 
inform the architecture of network-attached endpoints and the intermediary switches and routers. 

 We designed and implemented a large-scale platform, which we call Isis2, to allow increased 
scalability, availability, and performance on cloud resources.  Isis2 supports consistent, locally 
responsive cloud services.  Responses to client requests can be computed using purely local data, 
hence delays are limited only by local computational costs.  Updates propagate asynchronously 
and map to a single IP multicast; locking is usually avoided by employing primary-copy 
replication, and otherwise is performed with an inexpensive token-passing scheme.  The 
approach relaxes durability for soft-state updates: in analog to the database community, this 
yields an “ACI and mostly D” model.  Durability violations are concealed using a form of 
firewall. 

 We exhaustively benchmarked and tuned the Isis2 system on the AFRL’s production Condor 
cluster, investigating its ability to scale using physical IPMC, and the benefits derived from 
Isis2’s foundation upon our earlier Dr. Multicast work [1]. We explored the tradeoffs between 
different protocol designs and gained insights into the applicability of such protocols in different 
layers of the typical cloud and for different application architecture needs [6]. 

 We explored the applicability of the oft-invoked Consistency, Availability and Partition 
tolerance (CAP) theorem to the very specific environmental details of commonly deployed 
clouds, and discovered important, and somewhat heretical, insights.  CAP explores tradeoffs 
between its three constituents, and the theorem concludes that a replicated service can possess 
just two of the three.  The theorem is proved by forcing a replicated service to respond to 
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conflicting requests during a partitioning failure, triggering inconsistency.  However, there are 
replicated services for which the applicability of CAP is unclear.  As part of our effort, we 
looked at scalable “soft-state” services that run in the first-tier of a single cloud-computing data 
center.  The puzzle is that such services live in a single data center and run on redundant 
networks.  Partitioning events involve single machines or small groups and are treated as node 
failures; thus, the CAP proof doesn’t apply.  Nonetheless, developers believe in a generalized 
CAP “folk theorem,” holding that scalability and elasticity are incompatible with strong forms of 
consistency.   We present a first-tier consistency alternative that replicates data, combines 
agreement on update ordering with amnesia freedom, and supports both good scalability and fast 
response. 

 While involving a large team of Masters students, we designed and built a sophisticated 
application atop Isis2.  This served as a critical proof-of-concept that the Isis2 platform not only 
provides performance and consistency benefits in the abstract as a middleware solution, but can 
also be efficiently utilized, in terms of practical software engineering, by a team of junior 
programmers without much prior experience in distributed systems development, and with no 
exposure to the platform.  Over a period of ten weeks, our team of four students transformed an 
existing computer vision research application, designed strictly for sequential uniprocessor 
execution, into a scalable, distributed application running atop Isis2 on a cluster of nodes in a 
cloud. 

As part of this effort, we have released the Isis2 platform to the public under a (3-clause) 
BSD license with no patent or other restrictions.  Our publications document the hard problems 
we solved, and they represent a roadmap that others could follow to create similar platforms that 
obtain greater consistency and performance on the critical first tier of the cloud. 
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4. RESULTS AND DISCUSSION 
The CAP theorem [7][8] has been influential within the cloud computing community, and 

motivates the creation of cloud services with weak consistency properties. While the theorem 
focuses on services that span partition-prone network links, CAP is also cited in connection with 
Basically Available replicated Soft state with Eventual consistency (BASE), a methodology in 
which services that run in a single data center on a reliable network are engineered to use a non-
transactional coding style, tolerate potentially stale or incorrect data, and eschew 
synchronization.  eBay invented the approach [9], and Amazon points to the self-repair 
mechanisms in the Dynamo key-value store as an example of how eventual consistency behaves 
in practice [10]. 

The “first-tier” of the cloud, where this issue is prominent, is in many ways an unusual 
environment.  When an incoming client’s request is received, fast response is the overwhelming 
priority, even to the extent that other properties might need to be weakened.  Cloud systems host 
all sorts of subsystems with strong consistency guarantees, including databases and scalable 
global file systems, but they reside “deeper” in the cloud, shielded from the heaviest loads by the 
first-tier. 

To promote faster responsiveness, first-tier applications often implement replicated in-
memory key-value stores, using them to store state or to cache data from services deeper in the 
cloud.  When this data is accessed while processing a client request, locking is avoided, as are 
requests to inner services, for example to check that cached data isn’t stale.  To the extent that 
requests have side-effects that require updates to the cloud state, these are handled in a staged 
manner: the service member performs the update locally and responds to the client.   Meanwhile, 
in the background (asynchronously), updates are propagated to other replicas and, if needed, to 
inner-tier services that hold definitive state.  Any errors are detected and cleaned up later, 
hopefully in ways external clients won’t notice: eventual consistency. 

This works well for eBay, Facebook and other major cloud providers today.  But will it work 
for tomorrow’s cloud applications?  For example, as applications such as medical records 
management (including “active” medical applications that provide outpatient monitoring and 
control), transportation systems (smart highways), control of the emerging smart power grid, and 
similar tasks shift to the cloud, we’ll confront a wave of first-tier applications that may be 
required to justify their actions.  Is a scalable solution to this problem feasible? 

Our approach mimics many aspects of today’s BASE solutions, but offers first-tier service 
replicas a way to maintain consistent replicated data, across the copies.  Locks are not required:  
any service instance sees a consistent snapshot of the first-tier state, using locks only if a mutual 
exclusion property is required.  To maximize performance, updates are performed optimistically 
and asynchronously, but to avoid the risk that updates might be lost in a later crash, we introduce 
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a flush barrier: before replying to an external client (even for a read-only operation), the primary 
checks to make sure that any unstable updates on which the request depends have reached all the 
relevant replicas.  Jointly, these techniques yield a strong consistency guarantee and amnesia 
freedom: in-memory durability.  We believe this is a good match to the performance, scalability 
and responsiveness needs of first-tier cloud services. 

This effort doesn’t have the scope to consider other alternatives, such as full-fledged 
transactions.  Nonetheless, our experimental work supports the view that full-fledged atomic 
multicast wouldn’t scale well enough for use in this setting (i.e. durable versions of Paxos1, or 
Atomicity, Consistency, Isolation and Durability (ACID) transactions).  As we’ll show, strongly 
durable multicast exhibits marked performance degradation in larger-scale settings.  In contrast, 
amnesia freedom scales well, overcoming the limitations of CAP.   

4.1 Life in the First-Tier 

Cloud-computing systems are generally structured into tiers: a first-tier that handles 
incoming client requests (from browsers, applications using web-services standards, etc), caches 
and key-value stores that run near the first-tier, and inner-tier services that provide database and 
file-system functionality.  A wide variety of back-end applications run off the critical path, 
preparing indices and other data for later use by online services. 

In the introduction some aspects of the first-tier programming model were discussed: 
aggressive replication, very loose coupling between replicas, optimistic local computation 
without locking, and asynchronous updates.  Modern cloud-development platforms standardize 
this model, and in fact take it even further.  In support of elasticity, first-tier applications are also 
required to be stateless: cloud platforms launch each new instance in a standard initial state, and 
they discard local data when an instance fails or is halted.  These terms require some explanation.  
“Stateless” doesn’t mean that these instances have no local data but rather that they are limited to 
non-durable soft state.  On launch, a new instance initializes itself by copying data from some 
operational instance, or by querying services residing deeper in the cloud.  Further, “elasticity” 
doesn’t mean that a service might be completely shut down without warning: cloud-management 
platforms can keep some minimum number of replicas of each service running (ensuring 
continuous availability). Subject to these constraints, however, replication degree can vary 
rapidly.  

These observations enable a form of durability.  Data replicated within the soft state of a 
service, in members that the management platform won’t shut down (because they reside within 
the core replica set), will remain available unless a serious failure causes all the replicas to crash 
simultaneously.  Failures of that kind will be rare in a well-designed application; we’ll leverage 
this observation below.  

                                                 
1 Paxos is a family of protocols for solving consensus in a network of unreliable processors. Consensus is the process of agreeing 

on one result among a group of participants. This problem becomes difficult when the participants or their communication 
medium may experience failures 

http://en.wikipedia.org/wiki/Consensus_(computer_science)
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This, then, is the context within which CAP is often cited as a generalized principle.  In 
support of extremely rapid first-tier responses and fault-tolerance, developers have opted for 
relaxed consistency.  This effort will shows that one can achieve similar responsiveness while 
delivering stronger consistency guarantees by adopting a consistency model better matched to 
the characteristics of the first-tier. The approach could enable cloud-hosting of applications that 
need strong justification for any responses they provide to users.  Consistency can also enhance 
security: a security system that bases authorization decisions on potentially stale or incorrect 
underlying data is at risk of mistakes that a system using consistent data won’t make. 

4.2 Consistency: A Multi-Dimensional Property 
Terms like consistency can be defined in many ways.  In prior work on CAP, the “C” is 

defined by citing the database ACID model; the “C” in CAP is defined to be the “C” and “D” 
from ACID.  Consistency, in effect, is conflated with durability.  Underscoring this point, several 
CAP and BASE papers also point to Paxos [11], an atomic multicast protocol that provides total 
ordering and durability. 

Durability is the guarantee that if an update has been performed, it will never be lost.  
Normally, the property is expected to apply even if an entire service crashes and then restarts.  
But notice that for a first-tier service, durability in this strongest sense conflicts with the soft-
state limitation.   By focusing on techniques that guarantee durability and are often used in hard-
state settings, one risks reaching conclusions that relate to features not needed by first-tier 
services.  With this in mind let’s review other common but debatable assumptions: 

4.2.1 Membership. 

Any replication scheme needs a membership model.  Consider some piece of replicated data 
in a first-tier service: the data might be replicated across the full set of first-tier application 
instances, or it might live just within some small subset of them (in the latter case the term shard 
is often used).  Which nodes are supposed to participate?   

For the case in which every replica has a copy of the data item, the answer is evident: all the 
replicas currently running.  But notice that because cloud platforms vary this set elastically, the 
actual collection will change over time, perhaps rapidly.  Full replication forces us to track the 
set, to have a policy for initializing a newly launched service instance, and to ensure that each 
update reaches all the replicas, even if that set is large.   

For shard data any given item will be replicated at just a few members, hence a mapping 
from key (item-id) to shard is needed.  Since each service instance belongs to just a few shards 
but potentially needs access to all of them, a mechanism is also needed whereby any instance can 
issue read or update requests to any shard.  Moreover, since shard membership can change, we’ll 
need to factor membership dynamics into the model.  

One way to handle such issues is seen in Amazon’s Dynamo key-value store [12], which is a 
form of Distributed Hash Table (DHT).  Each node in Dynamo is mapped (using a hashing 
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function) to a location on a virtual ring, and the key associated with each item is similarly 
mapped to the ring.  The closest node with a mapped id less than or equal to that of the item is 
designated as its primary owner, and the value is replicated to the primary and to the next few 
(typically three) nodes along the ring: the shard for that key.  Shard mappings change as nodes 
join and leave the ring, and data is moved around accordingly (a form of state transfer).  
Coordination with the cloud-management service minimizes abrupt elasticity decisions that 
would shut down shards without first letting members transfer state to new owners.   

A second way to implement shards arises in systems that work with process groups [14]: 
here, the various requirements are solved by a group communication infrastructure (such as new 
Isis2 system).  Systems of this sort offer an Application Programming Interface (API) with basic 
functionality: ways for processes to create, join, and leave groups; group names that might 
encode a key (such as “shard123”), a state-transfer mechanism to initialize a joining member 
from the state of members already active, and built-in synchronization (Isis2, for example, 
implements the virtual synchrony model [14]).  The developer decides how shards should work, 
then uses the provided API to implement the desired policy.  With group communication 
systems, group membership change is a potentially costly event, but a single membership update 
can potentially cover many changes.  Accordingly, use of this approach presumes some 
coordination with the cloud management infrastructure so that changes are done in batches.  
Assuming that the service isn’t buggy, the remaining rate of failures should be very low. 

A third shard-implementation option is seen in services that run on a stable set of nodes for a 
long period, enabling a kind of static membership in which some set of nodes is designated as 
running the service.  Here, membership remains fixed, but some nodes may be down when a 
request is issued.  This forces the use of quorum replication schemes, in which only a quorum of 
replicas see each update, but reading data requires accessing multiple replicas.  State transfer 
isn’t needed unless the static membership is reconfigured. 

Several CAP papers express concern about the high cost of quorum operations, especially if 
they occur on the critical path for end-user request processing.  Notice that quorum operations 
are needed only in the static membership case (not for DHT or process group approaches).  
Those avoid the need for quorums because they evolve shard membership as nodes join, leave or 
fail.  This avoids a kind of non-local interaction that can be as costly as locking: if every read or 
update operation on the critical path entails interaction with multiple nodes, the reply to the end-
user could be delayed by a substantial number of multi-node protocol events (because many 
requests will perform multiple reads and updates).  With dynamic membership, we gain the 
ability to do reads and writes locally at the price of more frequent group membership updates.   

4.2.2 Update Ordering. 

A second dimension of consistency concerns the policy whereby updates are applied to 
replicas.  A consistent replication scheme is one that applies the same updates to every replica in 
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the same order, and that specifies the correct way to initialize new members, or nodes recovering 
from a failure [13][14][6]. 

Update ordering costs depend on the pattern whereby updates are issued.  In many systems, 
each data item has a primary copy through which updates are routed.  Some systems shift the 
role of being primary around, but the basic idea is the same: in both cases, by delivering updates 
in the order they occur at the primary, without gaps, the system can be kept consistent across 
multiple replicas. The required multicast ordering mechanism is simple and very inexpensive. 

A more costly multicast-ordering need arises if every replica can initiate concurrent, 
conflicting updates to the same data items.  When concurrent updates are permitted, the multicast 
mechanism must select an agreed-upon order, at which point the delivery order can be used to 
apply the updates in a consistent order at each of the replicas.  This is relevant only because the 
CAP and BASE point to protocols that do permit concurrent updates.  Thus by requiring 
replicated data to have a primary copy, we can achieve a significant cost reduction. 

4.2.3 Durability. 

The third dimension involves durability of updates.  Obviously, an update that has been 
performed is durable if the service doesn’t forget it.  But precisely what does it mean to have 
“performed” an update?  And must the durability mechanism retain data across complete 
shutdowns of the full membership of a service or shard? 

In applications where the goal is to replicate a database or file (some form of external 
storage), durability involves mechanisms such as write-ahead logs: all the replicas would push 
updates to their respective logs, then acknowledge that they are ready to commit the update, and 
then in a second phase, the updates in the logs can be applied to the actual database.  Lamport’s 
Paxos protocol [15][11] doesn’t talk about the application per-se, but most implementations of 
Paxos incorporate this sort of logging of pending updates.  This can be called strong durability, 
and it presumes a durable storage that will survive failures.   

Recall that first-tier services are required to be stateless.  Can a first-tier service replicate data 
in a way that offers a meaningful durability property?  The obvious possibility is in-memory 
update replication: we could distinguish between a service that might respond to a client before 
every replica knows of the updates triggered by that client’s request, and a service that delays 
until after every replica has acknowledged the relevant updates.  If we call the former solution 
non-durable (if the service has n members, even a single failure can leave n-1 replicas in a state 
where they will never see the update), what should we call this other solution?  This will be the 
case we’re referring to as amnesia freedom: the service won’t forget the update unless all n 
members fail (as noted earlier, that will be rare).  Notice that with amnesia freedom, any 
subsequent requests issued by the client, after seeing a response to a first request, will be handled 
by service instances “aware” of the updates triggered by that first request. 

Amnesia freedom isn’t perfect.  If a serious failure does force an entire service or shard to 
shut down, unless the associated data is backed up on some inner-tier service, state will be lost.  
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But, if such events are rare, the risk may be acceptable.  For example, suppose that applications 
for monitoring and controlling embedded systems such as medical monitoring devices move to 
cloud-hosted settings.  While these roles do require consistency and other assurance properties, 
the role of monitoring is a continuous online one. Moreover, applications of this sort generally 
revert to a fail-safe mode when active control is lost.  Here, one might not need any inner-tier 
service at all. 

Applications that push updates to an inner service have a choice: they can wait for the update 
to be acknowledged, or could adopt amnesia freedom, but in so doing, accept a window of 
vulnerability for the period between when the update is fully replicated in the memory of the 
first-tier service, until it reaches the inner-tier.  Another database analogy comes to mind: 
database mirroring is often done by asynchronously streaming a log, despite the small risk that a 
failure could cause updates to be lost.  An amnesia-free approach has an analogously small risk: 
having replicated an update in the memory of a first-tier service, the odds of it being lost will be 
orders of magnitude smaller than in today’s BASE approaches. 

4.2.4 Failure Model. 

This effort assumes that applications fail by crashing, and that network packets can be lost, 
and that partitioning failures that isolate a node, or even a rack or container are mapped to crash 
failures: when the network is repaired, the nodes that had been isolated will be forced to restart.  
We also assume that while isolated by a network outage, nodes are unable to communicate with 
external clients. 

4.2.5 Putting It All Together. 

We arrive at a rather complex set of choices and options, from which one can construct a 
diversity of replication solutions with very different properties, required structure, and expected 
performance.  Some make little sense in the first-tier; others represent reasonable options: 

One can build protocols that replicate data optimistically and later heal any problems that 
arise, perhaps using gossip (BASE).  Updates are applied in the first-tier, but then passed to 
inner-tier services which might apply them in different orders. 

One can build protocols synchronized with respect to membership changes, and with a 
variety of ordering and durability properties (virtual synchrony and also “in-memory” versions of 
Paxos, where the Paxos durability guarantee applies only to in-memory data).  Amnesia freedom 
is achieved by enforcing a “barrier”:  prior to sending a reply to the client request, the system 
pauses, delaying the response until any updates initiated by the request (or seen by the request 
through its reads) have reached all the replicas and thus become stable.  If all updates are already 
stable, no delay is incurred. 

One can implement a strongly-durable state-machine replication model.  Most 
implementations of Paxos use this model.  In our target scenario, of course, the strongest forms 
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of durability just aren’t meaningful: there is no benefit to logging messages other than in the 
memory of the replicas themselves.    

One can implement database transactions in the first-tier, coupling them to the serialization 
order used by inner-tiers, for example via a true multi-copy model based on the ACID model or a 
snapshot-isolation model.  This approach is receiving quite a bit of attention in the research 
community. 

How does CAP deal with this diversity of options?  The question is easier to pose than to 
answer.  Brewer’s 2000 Principles of Distributed Computing (PODC) keynote [7] proposed CAP 
as a general principle.  His references to consistency evoke ACID database properties.  Gilbert 
and Lynch offered their proof [8] in settings with partitionable wide-area links, and in fact 
pointed out that with even slight changes, CAP ceases to apply (for example, they propose a 
model called t-eventual consistency that avoids the CAP tradeoff).  In their work on BASE, 
Pritchett [9] and Vogels [10] point both to the ACID model and to the durable form of Paxos 
[15][11].  They argue that these models will be too slow for the first-tier; their concerns 
apparently stem from the costly two-phase structure of these particular protocols, and from their 
use of quorum reads and updates, resulting in delays on the critical path that computes responses.   

Notice that the performance and scalability concerns in question stem from durability 
mechanisms, not those supporting order-based consistency.  As we saw earlier, sharded data 
predominates in the first-tier, and one can easily designate a primary copy at which updates are 
performed first.  Other replicas mirror the primary.  Thus the “cost of consistency” can be 
reduced to the trivial requirement that updates be performed in the same FIFO order used by the 
primary.   

We recommend that first-tier services employ a shared model, with a primary replica for 
each data item, and we favor a process-group model that coordinates group membership changes 
with updates: virtual synchrony [14].  When a first-tier service instance receives a request, it 
executes it using local data, and applies any updates locally as well, issuing a stream of 
asynchronous updates that will be delivered and applied in First In, First Out (FIFO) order by 
other replicas.  This permits a rapid but optimistic computation of the response to the user: 
optimistic not because any rollback might be needed, but because failure could erase the 
resulting state.  This risk is eliminated by imposing a synchronization barrier prior to responding 
to the client, even for read-only requests.  The barrier delays the response until any prior updates 
have become stable, yielding a model with strong consistency and amnesia freedom.  Relative to 
today’s first-tier model, the only delay is that associated with the barrier event. 

4.3 The Isis2 System 
In this section, we offer a brief experimental evaluation of the system, focused on the costs of 

our scheme.  Our new Isis2 system supports virtually synchronous process groups and includes 
reliable multicasts with various ordering options.  The Send primitive is per-sender FIFO 
ordered.  An OrderedSend primitive guarantees total order; we won’t be using it here because 
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we’re assuming that sharded data has a primary copy.  The barrier primitive is called Flush; it 
waits passively until prior multicasts become stable. 

 
Figure 4.  Send, together with a Flush barrier. 
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Figure 5.  SafeSend (in-memory) Paxos. 

  

 

 
Figure 6.  Durable (disk-logged) Paxos. 

Isis2 also supports a virtually synchronous version of Paxos [14], via a primitive we call 
SafeSend.  The user can specify the size of the acceptor set; we favor the use of three acceptors, 
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but one could certainly select all members in a process group to serve as acceptors, or some other 
threshold appropriate to the application.  SafeSend offers two forms of durability: in-memory 
durability, which we use for soft-state replication in the first-tier, and true on-disk durability.  
Here, we only evaluate the in-memory configuration. 

In Figures 4-6 are illustrated these protocol options. A:1 and A:2 are two updates sent 
from Server A.  These runs all use a single-threaded sender.  With multiple threads SafeSend 
would have a more overlapped pattern of traffic that wouldn’t impact the per-invocation latency 
metrics on which our evaluations focuses. Our key insight is that for soft-state replication, 
SafeSend is no stronger than that of Send+Flush. 

In Figure 4 we see an application that issues a series of Send operations and then invokes 
Flush, which causes a delay until all the prior Sends have been acknowledged.  In this particular 
run, updates A:1 and A:2 arrive out of FIFO order at member C, which delays A:2 until A:1 has 
been received; we illustrate this case just to emphasize that FIFO ordering is needed, but 
inexpensive to implement.  To avoid clutter, Figure 4 omits stability messages that normally 
piggyback on outgoing multicasts: they inform the replicas that prior multicasts have become 
stable.  Thus, some future update, A:3, might also tell the replicas that A:1 and A:2 are stable and 
can be garbage-collected. 

Figure 5 shows our in-memory Paxos protocol with 2 acceptors (nodes A and B) and one 
additional member (node C); all three are learners (all deliver messages to the application layer).  
Figure 6 shows this same case, but now with a durable version of the Paxos protocol: pending 
requests are now logged to disk rather than being held in memory.  Not shown is the logic by 
which the log files are later garbage collected; it requires additional rounds of agreement, but 
they can be performed offline. 

Notice that had we responded to the client in Figure 4 without first invoking the Flush 
barrier, even a single failure could cause amnesia; once Flush completes, the client response can 
safely be sent.  Flush is needed even for a read-only client-request, since a read might observe 
data that was recently updated by a multicast that is still unstable.  On the other hand, a Flush 
would be free unless an unstable multicast is pending.  In fact, our experiments consider the 
worst-case: a pure-update workload; even so, Flush turns out to be cheap.  For a read-intensive 
workload, it would be cost even less, since there would often be no unstable multicasts, hence no 
work to do. 

The experiment we performed focuses on the performance-limiting step in our consistent-
replication scheme.  In many papers on data replication, update throughput would be the key 
metric.  For our work, it is more important to measure the latency to perform remote updates, 
relative to the responsiveness goals articulated earlier.  The reasons are dual.  On the sender side 
(e.g. Server A in Figure 4), all costs are local until the call to Flush, and the delay for that call 
will be determined by the latency of the earlier asynchronous Send operations.  For SafeSend, 
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the latency until delivery to the sender and to the other receivers is even more crucial; the sender 
cannot do local updates until a sufficient set of acceptors acknowledges the first-phase request.  
Thus, the single metric that tells us the most about the responsiveness of our solution is latency 
from when updates are sent, to when they are received and the application is able to perform 
them. We decided not to introduce membership churn; if we had done so, membership changes 
would have brought additional group reconfiguration overheads.  Isis2 batches membership 
changes, applying many at a time.  The protocol normally completes in a few milliseconds, 
hence even significant elasticity events can be handled efficiently. 

We ran our experiment on 48 nodes, each with twelve Xeon X5650 cores and connected 
by Gigabit Ethernet. Experiments with group sizes up to 48 used one member per node; for 
larger configurations we ran twelve members per-node.  We designed a client to trigger bursts of 
work during which five multicasts are initiated (e.g. to update five replicated data objects).  Two 
cases are considered: for one, the multicasts use Send followed by a Flush; the other uses five 
calls to SafeSend, in its in-memory configuration with no flush.  Figure 4 reports the latency 
between when processing started at the leader and when update delivery occurred, on a per-
update basis.  All three of these consistent-replication options scale far better than one might 
have expected on the basis of the literature discussed earlier, but the amnesia-free Send 
significantly outperforms SafeSend even when configured with just three acceptors.   

 

Figure 7.  Mean delivery latency per single invocations. 

Send primitive, contrasted with the same metric for SafeSend with three acceptors and SafeSend with acceptors 
equal to the size of the group. 
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Figure 8.  Histogram of delivery jitter.  

Variance in latency relative to the mean, for all three protocols in a group size of 192 members. 

 

  

Figure 9.  Cumulative Distribution Function (CDF) of delays. 

The CDF’s are associated with the Flush barrier. 
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Our experiments looked at replication on two scales.  Sharded data is normally replicated 
in fairly small groups; we assumed these would have a minimum of 3 and a maximum of 48 
members (inset in Figure 7).  Then we scaled out more aggressively (placing members on each 
core of each physical node) to examine groups with as many as 576 members.  We limited 
ourselves to evaluating SafeSend in its in-memory configuration (Figure 8), leaving studies of 
durable-mode performance (Figure 9) for future investigation; this decision reflects our emphasis 
on soft-state services in the first-tier. 

For Figure 8 we picked one group size, 192 members, and explored variance of delivery latency 
from its mean, as shown in Figure 7.  We see that while Send latencies are sharply peaked 
around the mean, the protocol does have a tail extending to as much as 100ms but impacting just 
a small percentage of multicasts.  For SafeSend the latency deviation is both larger and more 
common.  These observations reflect packet loss: In loss-prone environments (cloud-computing 
networks are notoriously prone to overload and packet loss) each protocol stage can drop 
messages, which must then be retransmitted.  The number of stages explains the degree of 
spread:  SafeSend latencies spread broadly, reflecting instances that incur zero, one, two or even 
three packet drops (see Figure 8).  In contrast, Send has just a single phase (Figure 7), and hence 
is at risk of at most loss-driven delay.  Moreover, Send generates less traffic, and this results in a 
lower loss rate at the receivers. 

The software releases developed here can be downloaded from 
http://www.cs.cornell.edu/ken/isis2/. 

 

4.4 Related Work 
There has been debate around CAP and the possible tradeoffs (CA/CP/AP).   Our treatment 
focuses on CAP as portrayed by Brewer [7] and by those who advocate for BASE [9][10].  Other 
relevant analyses include Gray’s classic analysis of ACID scalability [16], Wada’s study of 
NoSQL consistency options and costs [17], and Kossman’s [18][19][20] and Abadi’s 6 
discussions of this topic.  Database research that relaxes consistency to improve scalability 
includes the Escrow transaction model [22], PNUTS [23], and Sagas [24].  At the other end of 
the spectrum, notable cloud services that scale well and yet offer strong consistency include GFS 
[25], BigTable [26] and Zookeeper [27].  Papers focused on performance of Paxos include the 
Ring-Paxos protocol [28][29] and the Gaios storage system [30]. 

Our own work employs a model that unifies Paxos (state-machine replication) with virtual 
synchrony [14]; in particular, the discussion of amnesia freedom builds on one in [14].  Other 
mechanisms that we’ve exploited in Isis2 include the IPMC allocation scheme from Dr. Multicast 
[1], and the tree-structured acknowledgements used in QuickSilver Scalable Multicast [2]. 

http://www.cs.cornell.edu/ken/isis2/


APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
22 

 

5. CONCLUSIONS 
CAP is centered on concerns that the ACID database model and the standard durable form of 

Paxos introduce unavoidable delays.  Focusing carefully on the consistency and durability needs 
of first-tier cloud services, it was shown here that strong consistency and a form of durability we 
call amnesia freedom can be achieved with very similar scalability and performance to today’s 
first-tier methodologies.  Our approach would also be applicable elsewhere in the cloud. 

Obviously, not all applications need the strongest guarantees, and perhaps this is the real 
insight.  Today’s cloud systems are inconsistent by design because this design point works well 
for the applications that earn the revenue in today’s cloud.  The kinds of applications that need 
stronger assurance properties simply haven’t wielded enough market power to shift the balance. 
The good news, however, is that if cloud vendors decide to tackle high-assurance cloud 
computing, CAP will not represent a fundamental barrier to progress. 
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ACID Atomicity Consistency Isolation Durability 
ACM Association of Computing Machinery 
AFRL Air Force Research Laboratories 
BASE Basically Available replicated Soft state with Eventual consistency 
BSD Berkeley Standard Distribution 
C2 Command and Control 
CAP Consistency Availability Partition-tolerance 
CPU Central-Processing Unit 
DHT Distributed Hash Table 
DoD Department of Defense 
ESB Enterprise Service Bus 
FAA Federal Aviation Authority 
FIFO First-In, First-Out 
HPC High-Performance Computing 
IP / IPv4 Internet Protocol (version 4.0) 
IPMC Internet Protocol MultiCast 
LAN Local Area Network 
MCMD Dr. Multicast 
MPI Message-Passing Interface 
.NET [Non-acronym term for Windows’ managed execution environment] 
NSF National Science Foundation 
PVM Parallel Virtual Machines 
QSM Quicksilver Scalable Multicast 
O/S Operating System 
SEC Securities and Exchange Commission 
TCP Transmission Control Protocol 
UDP User Datagram Protocol 
WAN Wide Area Network 
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